The Trouble with Quizzles 5 ${ }^{\text {th }}$ April 2022

https://nrich.maths.org/cf2022
$y_{n} \rightarrow$ Number of Quizzles in year n
$y_{0} \rightarrow$ Starting number of Quizzles

$$
y_{n+1}=k y_{n}
$$

$$
\begin{aligned}
y_{0} & =1000 \\
y_{n+1} & =k y_{n}
\end{aligned}
$$

What happens to the number of Quizzles if:

- $k=1$
- $k>1$
- $k<1$

$x_{n} \rightarrow$ The proportion of the maximum possible number of Quizzles that there are in year n

(For example, $x_{3}=0.5$ means that in year 3 the population of Quizzles is half of the maximum possible population)

$x_{n+1}=k x_{n}\left(1-x_{n}\right)$

$$
x_{n+1}=2 x_{n}\left(1-x_{n}\right)
$$

If $x_{0}=0.3$ what is x_{1}, x_{2} and x_{3} ? What happens as the years increase? What if you started with a different x_{0} ?

1. Can you find a parameter (k value) where the population dies out?
2. Can you find a parameter so that the population settles to a non-zero constant value (which is not 0.5)?
3. Can you find a parameter so that the population eventually oscillates between two values? Or eventually cycles between three or four values?
4. Why have we chosen 0 and 4 as limits for the k slider?

$$
x_{n+1}=1.5 x_{n}\left(1-x_{n}\right)
$$

$$
0.6 \leq x_{0} \leq 0.8
$$

$$
x_{n+1}=3.2 x_{n}\left(1-x_{n}\right)
$$

$0.6 \leq x_{0} \leq 0.8$

$$
x_{n+1}=3.5 x_{n}\left(1-x_{n}\right)
$$

$0.6 \leq x_{0} \leq 0.8$

$$
x_{n+1}=3.7 x_{n}\left(1-x_{n}\right)
$$

$$
0.6 \leq x_{0} \leq 0.8
$$

$$
\begin{gathered}
x_{n+1}=3.7 x_{n}\left(1-x_{n}\right) \\
0.69 \leq x_{0} \leq 0.71
\end{gathered}
$$

$$
\begin{gathered}
x_{n+1}=3.7 x_{n}\left(1-x_{n}\right) \\
0.699 \leq x_{0} \leq 0.701
\end{gathered}
$$

Logistic Map

$$
x_{n+1}=k x_{n}\left(1-x_{n}\right)
$$

Websites: nrich.maths.org, plus.maths.org
Twitter: @nrichmaths, @stepsupportcam

